Фурье

 

 

ФУРЬЕ Жан Батист Жозеф

(21.3.1768, Осер — 16.5.1830, Париж)

Фурье (Fourier) Жан Батист Жозеф, французский математик, член Парижской АН (1817). Окончив военную школу в Осере, работал там же преподавателем. В 1796—98 преподавал в Политехнической школе.

Первые труды Фурье относятся к алгебре. Уже в лекциях 1796 он изложил теорему о числе действительных корней алгебраического уравнения, лежащих между данными границами (опубликовано в 1820), названную его именем; полное решение вопроса о числе действительных корней алгебраического уравнения было получено в 1829 Ж.Ш.Ф. Штурмом. В 1818 Фурье исследовал вопрос об условиях применимости разработанного И. Ньютоном метода численного решения уравнений, не зная об аналогичных результатах, полученных в 1768 французским математиком Ж. Р. Мурайлем. Итогом работ Фурье по численным методам решения уравнений является «Анализ определённых уравнений», изданный посмертно в 1831.

Основной областью занятий Фурье была математическая физика. В 1807 и 1811 он представил Парижской АН свои первые открытия по теории распространения тепла в твёрдом теле, а в 1822 опубликовал известную работу «Аналитическая теория тепла», сыгравшую большую роль в последующей истории математики. В ней Фурье вывел дифференциальное уравнение теплопроводности и развил идеи, в самых общих чертах намеченные ранее Д. Бернулли, разработал для решения уравнения теплопроводности при тех или иных заданных граничных условиях метод разделения переменных, который он применял к ряду частных случаев (куб, цилиндр и др.). В основе этого метода лежит представление функций тригонометрическими рядами Фурье, которые хотя и рассматривались иногда ранее, но стали действенным и важным орудием математической физики только у Фурье. Метод разделения переменных получил дальнейшее развитие в трудах С. Пуассона, М.В. Остроградского и др. математиков 19 в. «Аналитическая теория тепла» явилась отправным пунктом создания теории тригонометрических рядов и разработки некоторых общих проблем математического анализа. Фурье привёл первые примеры разложения в тригонометрические ряды Фурье функций, которые заданы на различных участках различными аналитическими выражениями. Тем самым он внёс важный вклад в решение знаменитого спора о понятии функции, в котором участвовали крупнейшие математики 18 в. Его попытка доказать возможность разложения в тригонометрический ряд Фурье любой произвольной функции была неудачна, но положила начало большому циклу исследований, посвященных проблеме представимости функций тригонометрическими рядами (П. Дирихле, Н. И. Лобачевский, Б. Риман и др.). С этими исследованиями было в значительной мере связано возникновение теории множеств и теории функций действительного переменного.

 


email: KarimovI@rambler.ru

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

 

Теоретическая механика   Сопротивление материалов

Прикладная механика  Строительная механика  Теория машин и механизмов

 

 

 

00:00:00

 

Top.Mail.Ru